Skip to Main Content (Press Enter)

Logo UNIME
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze

Competenze e Professionalità
Logo UNIME

|

UNIFIND - Competenze e Professionalità

unime.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze
  1. Pubblicazioni

Naringenin-Loaded Solid Lipid Nanoparticles: Physical–Chemical Characterization and In Vitro Antibacterial Activity

Articolo
Data di Pubblicazione:
2025
Abstract:
Currently, problems related to antibiotic resistance are shifting the focus of pharmaceutical research towards natural molecules with antibacterial properties. Among them, flavonoids represent promising molecules with strong antibacterial features; however, they have poor biopharmaceutical properties. In this study, we developed solid lipid nanoparticles (SLNs) loaded with the flavanone naringenin (NRG) to offer an option for treating bacterial infections. NRG-SLNs systems were prepared by a solvent emulsification/diffusion and ultrasonication method, using Compritol (R) 888 ATO (COM) as the lipid. The optimal formulation was obtained using a 10% (w/w) theoretical amount of NRG (NRG10-SLNs), exhibiting homogeneous sizes (approximately 50 nm and 0.15 polydispersity index), negative zeta potential (-30 mV), and excellent encapsulation parameters (an encapsulation efficiency percentage of 97.9% and a drug content of 4%). NRG10-SLNs presented good physical stability over 4 weeks. A cumulative drug release of 55% in 24 h and the prolonged release of the remaining amount over 10 days was observed. In addition, mu -Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction measurements were carried out to characterize the drug-lipid interactions. Finally, the in vitro antibacterial and antibiofilm activities of NRG10-SLNs were assayed and compared to free NRG. NRG10-SLNs were bacteriostatic against Staphylococcus aureus, including the methicillin-resistant S. aureus (MRSA) and Escherichia coli strains. An improvement in the antibacterial activity of NRG-loaded SLNs compared to the free molecule was observed against S. aureus strains, probably due to the interaction of the surfactant-coated SLNs with the bacterial surface. A similar trend was observed for the biofilm inhibition.
Tipologia CRIS:
14.a.1 Articolo su rivista
Keywords:
biofilm inhibition; in vitro antibacterial activity; naringenin; physical–chemical characterization; solid lipid nanoparticles; technological characterization
Elenco autori:
De Gaetano, F.; Caridi, F.; Totaro, N.; Celesti, C.; Venuti, V.; Ginestra, G.; Nostro, A.; Tommasini, S.; Ventura, C. A.; Stancanelli, R.
Autori di Ateneo:
CARIDI Francesco
CELESTI Consuelo
DE GAETANO Federica
GINESTRA Giovanna
NOSTRO Antonia
STANCANELLI Rosanna
TOMMASINI Silvana
TOTARO NOEMI
VENTURA Cinzia Anna
VENUTI Valentina
Link alla scheda completa:
https://iris.unime.it/handle/11570/3329529
Pubblicato in:
PHARMACEUTICALS
Journal
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Designed by Cineca | 25.11.4.0