Skip to Main Content (Press Enter)

Logo UNIME
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze

Competenze e Professionalità
Logo UNIME

|

UNIFIND - Competenze e Professionalità

unime.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze
  1. Pubblicazioni

Soft Sensors for Industrial Processes Using Multi-Step-Ahead Hankel Dynamic Mode Decomposition with Control

Articolo
Data di Pubblicazione:
2024
Abstract:
In this paper, a novel data-driven approach for the development of soft sensors (SSs) for multi-step-ahead prediction of industrial process variables is proposed. This method is based on the recent developments in Koopman operator theory and dynamic mode decomposition (DMD). It is derived from Hankel DMD with control (HDMDc) to deal with highly nonlinear dynamics using augmented linear models, exploiting input and output regressors. The proposed multi-step-ahead HDMDc (MSA-HDMDc) is designed to perform multi-step prediction and capture complex dynamics with a linear approximation for a highly nonlinear system. This enables the construction of SSs capable of estimating the output of a process over a long period of time and/or using the developed SSs for model predictive control purposes. Hyperparameter tuning and model order reduction are specifically designed to perform multi-step-ahead predictions. Two real-world case studies consisting of a sulfur recovery unit and a debutanizer column, which are widely used as benchmarks in the SS field, are used to validate the proposed methodology. Data covering multiple system operating points are used for identification. The proposed MSA-HDMDc outperforms currently adopted methods in the SSs domain, such as autoregressive models with exogenous inputs and finite impulse response models, and proves to be robust to the variability of systems operating points.
Tipologia CRIS:
14.a.1 Articolo su rivista
Keywords:
soft sensors; dynamical models; system identification; dynamic mode decomposition with control; nonlinear processes; multi-step prediction
Elenco autori:
Patane', Luca; Sapuppo, Francesca; Xibilia, Maria Gabriella
Autori di Ateneo:
PATANE' Luca
XIBILIA Maria Gabriella
Link alla scheda completa:
https://iris.unime.it/handle/11570/3306469
Pubblicato in:
ELECTRONICS
Journal
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Designed by Cineca | 25.10.4.0