Skip to Main Content (Press Enter)

Logo UNIME
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze

Competenze e Professionalità
Logo UNIME

|

UNIFIND - Competenze e Professionalità

unime.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze
  1. Pubblicazioni

Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars

Articolo
Data di Pubblicazione:
2024
Abstract:
This paper analyzes the beneficial effects on phase detection arising from the motion of an ac-coupled Doppler radar. Indeed, although the presence of an ac coupling stage suppresses the dc offset after the receiver RF output, due to the coupling capacitor, a high-pass behavior is introduced; the presence of a high-pass behavior leads to signal distortion, particularly for low Doppler frequencies, which are typical in many biomedical or industrial applications. Since the target displacement is usually extracted from the phase history, this effect might, in turn, worsen the overall accuracy of the system. Moreover, if the target alternates stationary and moving time intervals, the phase detection step becomes challenging. Indeed, during the stationary time, the output of the RF front-end shows only noise fluctuations that, in turn, result in uncorrelated phases which might be confused with the real target displacement. This negative effect might be avoided by keeping the radar continuously moving, thus exploiting what is usually considered a state that is negative and worthy of attention. In this contribution, this effect is addressed from a different perspective, and ad hoc experimental case studies are shown to demonstrate the effectiveness of the proposed system. This task has been accomplished through theoretical analysis and related experimental activity.
Tipologia CRIS:
14.a.1 Articolo su rivista
Keywords:
ac-coupling; Doppler radar; low-frequency noise; phase analysis; radar self-motion
Elenco autori:
Ferro, Luigi; Li, Changzhi; Scandurra, Graziella; Ciofi, Carmine; Cardillo, Emanuele
Autori di Ateneo:
CARDILLO Emanuele
CIOFI Carmine
FERRO LUIGI
SCANDURRA Graziella
Link alla scheda completa:
https://iris.unime.it/handle/11570/3289228
Pubblicato in:
ELECTRONICS
Journal
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Designed by Cineca | 25.10.4.0