Skip to Main Content (Press Enter)

Logo UNIME
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze

Competenze e Professionalità
Logo UNIME

|

UNIFIND - Competenze e Professionalità

unime.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze
  1. Pubblicazioni

NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches

Articolo
Data di Pubblicazione:
2022
Abstract:
NMR measurements combined with chemometrics allow achieving a great amount of information for the identification of potential biomarkers responsible for a precise metabolic pathway. These kinds of data are useful in different fields, ranging from food to biomedical fields, including health science. The investigation of the whole set of metabolites in a sample, representing its fingerprint in the considered condition, is known as metabolomics and may take advantage of different statistical tools. The new frontier is to adopt self-learning techniques to enhance clustering or classification actions that can improve the predictive power over large amounts of data. Although machine learning is already employed in metabolomics, deep learning and artificial neural networks approaches were only recently successfully applied. In this work, we give an overview of the statistical approaches underlying the wide range of opportunities that machine learning and neural networks allow to perform with accurate metabolites assignment and quantification.Various actual challenges are discussed, such as proper metabolomics, deep learning architectures and model accuracy.
Tipologia CRIS:
14.a.1 Articolo su rivista
Keywords:
Artificial intelligence; Biomarkers; Clustering; Deep learning; Health science; Machine learning; Metabolomics; NMR
Elenco autori:
Corsaro, C.; Vasi, S.; Neri, F.; Mezzasalma, A. M.; Neri, G.; Fazio, E.
Autori di Ateneo:
CORSARO Carmelo
FAZIO Enza
MEZZASALMA Angela Maria
NERI Fortunato
NERI Giulia
VASI Sebastiano
Link alla scheda completa:
https://iris.unime.it/handle/11570/3224983
Link al Full Text:
https://iris.unime.it//retrieve/handle/11570/3224983/471905/Corsaro_ApplSci_2022p.pdf
Pubblicato in:
APPLIED SCIENCES
Journal
  • Dati Generali

Dati Generali

URL

https://www.mdpi.com/2076-3417/12/6/2824
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Designed by Cineca | 25.10.4.0