Skip to Main Content (Press Enter)

Logo UNIME
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze

Competenze e Professionalità
Logo UNIME

|

UNIFIND - Competenze e Professionalità

unime.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Competenze
  1. Pubblicazioni

Circulating GFAP and Iba-1 levels are associated with pathophysiological sequelae in the thalamus in a pig model of mild TBI

Articolo
Data di Pubblicazione:
2020
Abstract:
Serum biomarkers are promising tools for evaluating patients following traumatic brain injury (TBI). However, their relationship with diffuse histopathology remains unclear. Additionally, translatability is a focus of neurotrauma research, however, studies using translational animal models are limited. Here, we evaluated associations between circulating biomarkers and acute thalamic histopathology in a translational micro pig model of mTBI. Serum samples were collected pre-injury, and 1 min-6 h following mTBI. Markers of neuronal injury (Ubiquitin Carboxy-terminal Hydrolase L1 [UCH-L1]), microglial/macrophage activation (Ionized calcium binding adaptor molecule-1 [Iba-1]) and interleukin-6 [IL-6]) and astrogliosis/astrocyte damage (glial fibrillary acidic protein [GFAP]) were measured. Axonal injury and histological features of neurons and glia were also investigated using immunofluorescent labeling and correlated to serum levels of the associated biomarkers. Consistent with prior experimental and human studies, GFAP, was highest at 6 h post-injury, while no substantial changes were observed in UCH-L1, Iba-1 or IL-6 over 6 h. This study also found promising associations between thalamic glial histological signatures and ensuing release of Iba-1 and GFAP into the circulation. Our findings suggest that in diffuse injury, monitoring serum Iba-1 and GFAP levels can provide clinically relevant insight into the underlying acute pathophysiology and biomarker release kinetics following mTBI, providing previously underappreciated diagnostic capability.
Tipologia CRIS:
14.a.1 Articolo su rivista
Keywords:
Animals; Biomarkers; Blood-Brain Barrier; Brain Injuries, Traumatic; Calcium-Binding Proteins; Disease Models, Animal; Glial Fibrillary Acidic Protein; Interleukin-6; Macrophage Activation; Male; Microglia; Microscopy, Electron; Swine; Swine, Miniature; Thalamus; Time Factors; Ubiquitin Thiolesterase
Elenco autori:
Lafrenaye, A. D.; Mondello, S.; Wang, K. K.; Yang, Z.; Povlishock, J. T.; Gorse, K.; Walker, S.; Hayes, R. L.; Kochanek, P. M.
Autori di Ateneo:
MONDELLO Stefania
Link alla scheda completa:
https://iris.unime.it/handle/11570/3190458
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Designed by Cineca | 25.10.4.0